


![]() |
![]() ![]() |
![]() |
![]() |
![]() |
Биография и жизнь![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() |
![]() |
|
![]() |
![]() |
|
По роду деятельности (занятий):
|
![]() |
![]() |
Биография Пуанкаре Жюля Анри - стр. 5![]() ![]() При переходе к движущейся системе отсчёта выполняются преобразования Лоренца вместо галилеевых (Лоренц считал эти преобразования реальным изменением размеров тел). Именно Пуанкаре дал правильную математическую формулировку этих преобразований (сам Лоренц предложил всего лишь их приближение первого порядка) и показал, что они образуют группу преобразований. Ещё в 1898 году, задолго до Эйнштейна, Пуанкаре в своей работе «Измерение времени» сформулировал общий (не только для механики) принцип относительности, а затем даже ввёл четырёхмерное пространство-время, теорию которого в сотрудничестве с Эйнштейном позднее разработал Герман Минковский. Тем не менее Пуанкаре продолжал использовать концепцию эфира, хотя придерживался мнения, что его никогда не удастся обнаружить — см. доклад Пуанкаре на физическом конгрессе, 1900 год. В этом же докладе Пуанкаре впервые высказал мысль, что одновременность событий не абсолютна, а представляет собой условное соглашение («конвенцию»). Было высказано также предположение о предельности скорости света. Под влиянием критики Пуанкаре Лоренц в 1904 году предложил новый вариант своей теории. В ней он предположил, что при больших скоростях механика Ньютона нуждается в поправках. В 1905 году Пуанкаре далеко развил эти идеи в статье «О динамике электрона». Предварительный вариант статьи появился 5 июня 1905 года в Comptes Rendus, развёрнутый был закончен в июле 1905 года, опубликован в январе 1906 года, почему-то в малоизвестном итальянском математическом журнале. В этой итоговой статье снова и чётко формулируется всеобщий принцип относительности для всех физических явлений (в частности, электромагнитных, механических и также гравитационных), с преобразованиями Лоренца, как единственно возможными преобразованиями координат, сохраняющими одинаковую для всех систем отсчёта запись физических уравнений. Пуанкаре нашёл выражение для четырёхмерного интервала как инварианта преобразований Лоренца: r2 + (ict)2, четырёхмерную формулировку принципа наименьшего действия. ![]() Другие известные Математики • Бэббидж Чарлз Похожие фамилии и имена на букву П
Описания видов деятельности
Пуанкаре Жюля Анри • Математики |
Самые последние новости
![]()
Последние новости недели
![]() Другие новости недели
![]() ![]() |
![]() |
![]() |
![]() |
![]() |